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Abstract. The spectrum of collective excitations of liquid-semimetal Bi is investigated within
the generalized collective mode approach. From the analysis of spectra obtained for different basis
sets of dynamical variables it is found that the high-frequency branch of propagating collective
excitations corresponds to heat waves in the liquid. The contributions of different modes to density–
density and energy–energy time correlation functions are discussed.

1. Introduction

Liquid metals are known as systems with well-defined collective excitations, which are
visible in the dynamical structure factors S(k, ω) (k and ω being wavenumber and frequency,
respectively) up to k ∼ 1 Å−1 [1]. For liquid semimetals and semiconductors the situation
as regards manifestation of collective excitations in S(k, ω) is still not so clear as for metallic
liquids and is under active study. For semimetallic Bi there was a report [2] on overdamped
collective excitations, which were not found beyond k ∼ 0.6 Å−1 in S(k, ω) obtained by means
of molecular dynamics (MD). Moreover, recently [3] the analysis of scattering experiments
and molecular dynamics simulations of another semimetallic liquid, Ga, led to the conclusion
of the existence of an additional ‘non-acoustic’ high-frequency branch in the spectrum of
collective excitations.

Usually, the dynamics of binary systems has only been considered assuming the existence
of several branches of propagating excitations. The high-frequency excitations in binary liquids
were associated with the ‘fast-sound’ phenomenon [4–6] or with optic-like excitations in the
case of ionic solutions [7, 8]. In the most recent investigation [9] it was shown that optic-like
excitations exist even in mixtures of simple liquids and are caused by mass-concentration
fluctuations. However, we have found only a few reports of investigations focused on the
possibility of observing non-hydrodynamic excitations in simple liquids. In [10] the analysis
of thermal neutron scattering experiments on liquid Cs and Rb near the melting point allowed
the conclusion to be reached that the renormalization of the adiabatic sound velocity was caused
by short-wavelength collective excitations called ‘zero-sound-like’ modes. However, neither
in [10] nor in [3] was the origin of the non-acoustic collective excitations clearly established.

Only in the hydrodynamic limit (k → 0, ω → 0) can the collective mode spectrum
be studied analytically [11, 12]. For the longitudinal dynamics of pure liquids there exist
three conserved variables: number density n̂(k, t), density of longitudinal current Ĵl(k, t),
and energy density ê(k, t). These three hydrodynamic variables correspond to three local
conservation laws, which form a closed set of equations. The solution of the hydrodynamic
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set of equations for pure liquids is well known: three eigenmodes determine the dynamics of
pure liquid in the long-wavelength limit, namely the two sound waves propagating in opposite
directions (a pair of complex-conjugate eigenvalues) and one relaxing thermodiffusive mode
(a purely real eigenvalue).

Beyond the hydrodynamic region, short-time kinetic processes become very important
and the standard hydrodynamics fails to explain the dynamics on a short-range scale. A
generalized method was suggested in [13] for investigating the dynamical properties of a
simple Lennard-Jones (LJ) liquid over a wide range of wavevectors. The main idea of this
new method was an extension of the basis set of dynamical variables by including, in addition
to the hydrodynamic ones, their time derivatives, which were supposed to describe short-time
processes in liquids. The time evolution of these ‘extended’ variables was obtained in computer
experiments carried out to evaluate the relevant time correlation functions and static averages.
All static averages and some fitting parameters were used then to estimate the matrix elements
of the secular equation derived from the generalized Langevin equation. In [14] this method of
generalized collective modes (GCM) was modified into a parameter-free approach and in [15]
was advanced to a high-number-of-variables approximation taking into account the first three
time derivatives of the hydrodynamic variables in the basis set. In general, the basis set of
N dynamical variables generated an N × N secular equation and resulted in N generalized
collective modes (eigenvalues). The GCM method proved to be very useful for investigation
of spectra of collective excitations in pure LJ liquids [13,14], liquid-metallic Cs [16,17], liquid
water [18], the ‘fast-sound’ mixture He65Ne35 [19,20], the glass-forming liquid-metallic alloy
Mg70Zn30 [9, 21], and the metallic molten alloy Li4Pb [23].

Among the N eigenvalues, the lowest ones (three modes in the case of pure liquids, and
four for binary systems) always correspond to the hydrodynamic modes, which behave at
k → 0 as predicted by linear hydrodynamics. All other eigenvalues are called kinetic modes;
these correspond to the processes with short timescales and cannot be obtained by the standard
hydrodynamic treatment. Just kinetic modes are responsible for the ‘fast-sound’ phenomenon
in binary liquids and optic-like excitations in many-component fluids. However, no attention
has been paid to the possibility of observing kinetic modes in the time correlation functions
(TCFs) of pure liquids. Even the origin of the kinetic modes for pure systems is not known
a priori. Therefore, the theoretical study of possible eigenmodes in pure metals and semimetals
is of great interest.

The goals of this study are:

(i) to obtain the spectrum of collective excitations within the high-number-of-variables
approximation of the parameter-free method of generalized collective modes;

(ii) to estimate the origin of the branches in the spectrum of longitudinal collective modes of
liquid-semimetal Bi (n = 0.0289 Å−3, T = 578 K); and

(iii) to focus on the contributions of different modes to the time correlation functions.

The paper is organized as follows: in section 2 we briefly describe the method; the results
for the spectrum of collective excitations and mode contributions to TCFs are reported in
section 3, and conclusions are given in section 4.

2. Details of calculations

Within the nine-variable approximation [15] of the parameter-free GCM method, for the case
of longitudinal dynamics in pure liquids the basis set of dynamical variables consists of the
following operators:

A(9)(k, t) =
{
n(k, t), Jl(k, t), e(k, t), J̇l(k, t), ė(k, t), J̈l(k, t), ë(k, t),

...

Jl(k, t),
...
e (k, t)

}
(1)
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where the dots denote the orders of the time derivatives of the relevant operators. The basis
set of dynamical variables is applied to generate the eigenvalue problem from the generalized
Langevin equation in the Markovian approximation [14, 15]:

[zI + T(k)]F̃M(k, z) = F0(k, t = 0) (2)

where F̃M denotes the Laplace-transformed matrix of TCFs, which can be calculated from (2)
in the Markovian approximation; I is the identity matrix, and F0(k, t) is the matrix of TCFs.
It was shown in [14] that the generalized hydrodynamic matrix T(k) can be written in the
Markovian approximation as follows:

T(k) = −iΩ(k) + M̃(k, 0) = F0(k, 0)F̃0
−1
(k, 0) (3)

where iΩ(k) and M̃ are the frequency matrix and the matrix of memory functions, respectively.
The basis set (1) is used to generate the 9 × 9 eigenvalue problem for the matrix T(k):

9∑
j=1

Tij (k)Xj,α = zα(k)Xi,α α = 1, . . . , 9 (4)

where Xj,α is an eigenvector which corresponds to the eigenvalue zα .
In our case the 9 × 9 Hermitian matrix of static correlation functions F0(k, t = 0) has the

form

F0(k) =




fnn 0 fne −ikfJJ 0 0 −kfJ̇ e ikfJ̇ J̇ 0
0 fJJ 0 0 −ifJ̇e −fJ̇ J̇ 0 0 ifJ̈ ė
fne 0 fee −ifJ̇e 0 0 −fėė ifJ̈ ė 0

ikfJJ 0 ifJ̇e fJ̇ J̇ 0 0 −ifJ̈ ė −fJ̈ J̈ 0
0 ifJ̇e 0 0 fėė −ifJ̈ ė 0 0 −fëë
0 fJ̇ J̇ 0 0 ifJ̈ ė fJ̈ J̈ 0 0 −if ...

J ë−kfJ̇ e 0 −fėė ifJ̈ ė 0 0 fëë −if ...

J ë
0

−ikfJ̇ J̇ 0 −ifJ̈ ė −fJ̈ J̈ 0 0 if ...

J ë
f ...

J
...

J
0

0 −ifJ̈ ė 0 0 −fëë if ...

J ë
0 0 f ...e

...
e




.

(5)

Similarly, taking into account [13,14] the properties of the time correlation functions, one
obtains for F̃0(k) = F̃0(k, z = 0)

F̃0(k) =




τnnfnn
i

k
fnn τnefne 0 fne −ikfJJ 0 0 −kfJ̇ e

i

k
fnn 0

i

k
fne fJJ 0 0 −ifJ̇e −fJ̇ J̇ 0

τnnfne
i

k
fne τeefee 0 fee −ifJ̇e 0 0 −fėė

0 −fJJ 0 0 ifJ̇e fJ̇ J̇ 0 0 −ifJ̈ ė
−fne 0 −fee ifJ̇e 0 0 fėė −ifJ̈ ė 0

−ikfJJ 0 −ifJ̇e −fJ̇ J̇ 0 0 ifJ̈ ė fJ̈ J̈ 0
0 −ifJ̇e 0 0 −fėė ifJ̈ ė 0 0 fëë
0 fJ̇ J̇ 0 0 −ifJ̈ ė −fJ̇ J̇ 0 0 if ...

J ë

kfJ̇ e 0 fėė −ifJ̈ ė 0 0 −fëë if ...

J ë
0




(6)

where

τij (k) = 1

F 0
ij (k, t = 0)

∫ ∞

0
F 0
ij (k, t) dt (7)
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are the hydrodynamic correlation times, which contain information about time-dependent
properties of the system within the parameter-free GCM method.

Equation (2) has analytic solutions in terms of eigenvectors and eigenvalues of the matrix
T(k), namely,

F̃Mij (k, z) =
N∑
α=1

Gαij (k)

z + zα(k)
(8)

where

Gαij (k) =
N∑
l=1

XiαX
−1
αl F

0
lj (k, 0) (9)

are the weight coefficients describing the relevant contributions from the collective modes
zα(k). In the time representation the solutions (8) have the form

FMij (k, t) =
N∑
α=1

Gαij (k) exp{−zα(k)t}. (10)

Thus, for the basis set (1) each Markovian approximant FMij (k, t) is expressed as a weighted
sum of N = 9 terms and each of them is associated with the αth effective collective mode
zα(k). The following properties of TCFs in the Markovian approximation are very important
from the point of view of sum rules:∫ ∞

0
FM(k, t) dt =

∫ ∞

0
F0(k, t) dt (11)

FM(k, t = 0) = F0(k, t = 0). (12)

Using these equations one can show [22] that the Markovian approximantsFMij (k, t) reproduce
exactly the frequency moments of the relevant MD-derived hydrodynamic TCFs up to the 2Sth
order, inclusive, where S denotes the highest order of the time derivatives of the hydrodynamic
variables included in the basis set. With the choice (1), the density–density time correlation
function is exactly reproduced up to the eighth frequency moment, while for the energy–energy
TCF the first seven frequency moments coincide with the actual ones.

To apply the GCM method in calculations of collective excitation spectra of a particular
liquid, one has to continue the computer experiment and evaluate directly the matrix elements in
equations (5) and (6). Liquid Bi with number density n = 0.0289 Å−3 at average temperature
578 K was studied by means of MD simulations in the standard microcanonical ensemble
using a system of 1000 particles interacting through the oscillating potential�ij (r) at constant
volume V = L3. The smallest wavenumber achieved in the MD was kmin = 0.1928 Å−1.
The time evolution of the hydrodynamic variables and their time derivatives was observed
during the production run over 3 × 105 steps. The effective two-body potential �ij (r) was
taken in an analytical form from [24]. This potential was obtained in the cited work by fitting
the calculated static structure factor of liquid Bi to the experimental one. We would like just
to mention that this potential is much weaker than the two-body potential used in [16, 17]
for investigation of the dynamical properties of liquid Cs within the GCM method. We will
compare some results with ones obtained in the case of liquid Cs, but more detailed study of the
role of the interatomic potential in the behaviour of generalized thermodynamic quantities and
spectra of collective excitations of liquid metals and semimetals will be reported elsewhere.

The following scales of energy, length, and time are used below for reduction of the
dimensional quantities: ε = kBT , σ = k−1

min, τ = σ(m/ε)1/2 = 3.42 ps.
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3. Results and discussion

The static correlation functions fnn(k), fne(k), fee(k), and fJ̇e(k), evaluated directly by means
of MD, are shown in figure 1. The static structure factorS(k) calculated as the Fourier transform
of the pair correlation function (shown by crosses) is in very good agreement with the static
correlation function fnn(k), which indicates reliability of the static averages directly evaluated
from the MD. Since within Newtonian dynamics any operator of the basis set A(9)(k, t) can
be expressed in an analytical form via the positions and velocities of particles as well as via
spatial derivatives of the interatomic potential (see [14]), one can evaluate directly in MD

fnn
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Figure 1. Static averages fnn(k), fne(k), fee(k),
and fJ̇ e(k), obtained directly in the MD (circles).
Reduced units are used. The static structure factor
S(k), calculated as the Fourier transform of the radial
distribution function, is shown by crosses in the top
frame. In the bottom frame crosses correspond to the
values of fJ̇ e(k), obtained via numerical derivatives of
the relevant time correlation function at t = 0. Dotted
lines denote the spline interpolation. The double arrow
denotes the positionQp of the main peak of S(k).
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any static average for basis variables with the same precision. Having an analytical form of
the interatomic potential, we have avoided the numerical evaluation of spatial derivatives of
�ij (r). This resulted in a very smooth k-dependence of the static averages evaluated directly
in the MD. From figure 1 one can see that the static averages fne(k) and fee(k) have nearly
the same features as the static structure factor (Qp denotes the position of the main peak of
S(k)), while fJ̇e(k) is a linear function of k when k → 0. Another way of calculating fJ̇e(k)
is via the numerical second-order time derivative of the time correlation function Fne(k, t) at
t = 0. It is seen in figure 1 that the two methods (direct evaluation of static averages, shown
by open circles, and via numerical second derivatives of relevant TCFs, shown by crosses)
give almost identical values. In this study we used the second method of evaluation of static
averages only for three static correlation functions involving operators with three dots. This
allowed us to decrease substantially the duration of the MD production runs. All of the other
static correlation functions were directly calculated in the MD.

Using our MD data for static correlation functions (shown in figure 1), we can also obtain
the k-dependent generalized thermodynamic quantities [13, 14], namely,

H(k) = 1

kBT k
fJ̇e(k) (13)

CV (k) = 1

kBT 2
[fee(k)− f 2

ne(k)/fnn(k)] (14)

α(k)T = 1

kBT
[H(k)fnn(k)− fne(k)] (15)

γ (k) = CP (k)

CV (k)
CP (k) = CV (k) + kBT

2α2(k)/fnn(k) (16)

where kB denotes the Boltzmann constant, H(k) is the generalized enthalpy per particle, α(k)
is the generalized thermal linear expansion coefficient, and CV (k) and CP (k) are generalized
specific heats at constant volume and constant pressure per particle, respectively. We show
these generalized thermodynamic quantities in figure 2. There is a substantial difference in
behaviour of the generalized thermodynamic quantities for liquid Bi in comparison with LJ
fluid [14] and liquid-metallic Cs [16]. For example, the generalized enthalpy per particle does
not change sign as a function of k as it did in the case for LJ liquid or Cs above the melting
point. There is another interesting feature for the generalized linear expansion coefficient
α(k). In the range ∼(1.5–2.2) Å−1 this function of k takes negative values, while at k → 0
it is close to the value of the linear expansion coefficient of solid Bi (shown by the asterisk at
k = 0). The existence of a negative peak in α(k) is, perhaps, connected with the features of
the interatomic potential and the relatively small kinetic energy of heavy particles of Bi. This
conclusion is supported by the similar behaviour of α(k) in the case of Pb above the melting
point [25], while at high temperatures this function for Pb is a positive function with a peak at
Qp, as was also obtained for liquid Cs [16]. The generalized specific heat at constant volume
CV (k) has a maximum in the region of the main peakQp. The asterisk at k = 0 indicates the
value of CV obtained from the formulae for temperature fluctuations during the MD run. The
generalized ratio of specific heats γ (k) at k → 0 is close to the value of γ for Bi at the melting
point [1]. This function has a minimum at k ∼ 1.4 Å−1 with a value of ∼1.0, which indicates
the region of applicability of viscoelastic theory for liquid Bi.

For the case of a simple liquid there exist three correlation times, which contain within the
method of GCM all the information about time-dependent properties of the system investigated.
In figure 3 we show the correlation times τnn(k), τne(k), and τee(k) multiplied by k2. One can
see that the three functions are very similar and reflect the behaviour of the structure factor
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Figure 2. Generalized thermodynamic quantities for liquid Bi at 578 K (in reduced units): the
generalized enthalpy per particle H(k); the generalized linear expansion coefficient α(k); the
generalized specific heat at constant volume per particle CV (k); the generalized ratio of specific
heats γ (k). Asterisks at k = 0 denote: α(k)T evaluated from the value known for solid Bi; for
CV (k), the value obtained via temperature fluctuations in the MD; for γ (k), the value at the melting
temperature of Bi. Dotted lines denote the spline interpolation.

S(k) over the entire k-range studied. At k → 0 these correlation times, multiplied by k2,
tend to non-zero values. The similarity of the three functions can be understood from figure 4,
where the normalized density–density, density–energy, and energy–energy TCFs are shown for
two wavenumbers. These functions display for small k-values strong oscillations with almost
the same period. In contrast to the case for liquid Cs [16], where oscillations of energy–
energy TCFs are overdamped even for small k-values, in liquid Bi the energy–energy and
energy–density time correlation functions have even more pronounced oscillations than the
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Figure 3. Correlation times τnn(k) (crosses), τne(k) (open circles), and τee(k) (open triangles),
multiplied by k2, calculated from equation (7) on the basis of MD time correlation functions.
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Figure 4. Normalized time correlation functions for two k-values: Fnn(k, t) (solid line), Fne(k, t)
(dashed line), Fee(k, t) (dashed–dotted line). kmin and τ are 0.1928 Å−1 and 3.42 ps, respectively.
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density–density ones. Such a behaviour is observed in the k-region up to ∼1 Å−1.
The eigenvalues of the matrix T(k) for liquid Bi, obtained from the 9 × 9 secular equation

(4) generated from the basis set (1), are shown in figure 5. As functions of k they form the
spectrum of collective excitations. It is seen in figure 5 that the spectrum consists of three
branches of propagating modes with complex eigenvalues:

z±α (k) = ±iωα(k) + σα(k) α = 1, . . . , 3

and three purely real relaxing modes

Im{zRα (k)} = 0 α = 1, . . . , 3.
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Figure 5. The spectrum of collective excitations of liquid Bi at 578 K, obtained for the nine-
variable basis set A(9)(k, t). Complex and purely real eigenvalues are shown by the symbols ×
and +, respectively. The asymptotic hydrodynamic behaviour of the lowest eigenvalues is shown
by dashed lines.
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The imaginary parts of the eigenvalues in the case of liquid Bi are well separated, which allows
one to easily distinguish different branches of propagating excitations z±α (k). However, this
is difficult to perform for relaxing modes with purely real eigenvalues (the bottom frame in
figure 5), because they are very close in the spectrum.

From the behaviour of the eigenvalues at k → 0 one can estimate that the lowest pair
of propagating modes z±1 (k) corresponds to the generalized acoustic excitations with linear
dispersion ωs(k):

z±1 (k)→ ±icsk + +k2 k → 0. (17)

The straight dashed line in the top frame of figure 5 makes it possible to see that the lowest
branch z±1 (k) has a small ‘positive dispersion’ that is in complete agreement with predictions
of mode-coupling analysis [26–28]. From the slope of this line we estimated the speed of
longitudinal sound in liquid Bi to be cs = 1508.7 m s−1, which is in perfect agreement with
the experimental value of 1520 m s−1 [29, 30]. The real parts of z±1 (k), which determine
the damping (or inverse lifetime) of the generalized sound excitations, in the hydrodynamic
limit are functions of k2 with the sound attenuation coefficient +. We estimated + to be
1.20 × 10−7 m2 s−1. Beyond the hydrodynamic region the mode-coupling effects become
important and they change the dependence (17). For the case of the real parts of the eigenvalues
z±1 (k), the departure from the hydrodynamic parabolic form (shown by the dashed line)
displays negative dispersion; this is, again, in agreement with the predictions of mode-coupling
analysis [26–28].

Another hydrodynamic eigenvalue, which is a purely real one and corresponds to the
thermodiffusive mode, according to the predictions of hydrodynamics, behaves in the small-k
region like

zR1 (k)→ DT k
2 k → 0 (18)

with DT being the thermodiffusion coefficient. From the smallest-k point we estimated the
valueDT = 1.546×10−7 m2 s−1. The dashed line with the dependence (18) almost coincides
with the lowest purely real eigenvalue for the three smallest k-values. For this eigenvalue
zR1 (k), however, there also exists a small negative departure from the form (18) beyond the
hydrodynamic region due to mode-coupling effects.

A note should be added here about mode-coupling effects. We mean here the dynamical
coupling between different collective modes, which results in shifts of the eigenvalues in
comparison with ‘bare’ collective modes. The latter could be obtained within the relevant
separated-variable treatment. These mode-coupling effects can be called ‘local’ ones since
they take into account coupling of different modes with the same k-value only. One should
distinguish these effects from the results of mode-coupling theory (see, e.g., [11, 31, 32]), in
which non-local coupling of hydrodynamic modes for small k and ω is considered.

The pair of propagating modes z±1 (k) and the thermodiffusive mode zR1 (k) form the
set of generalized hydrodynamic collective excitations. All other eigenvalues correspond to
kinetic modes, which in the small-k limit, in contrast to generalized hydrodynamic ones, have
finite damping coefficients (lifetime) and do not contribute to the long-wavelength dynamics.
However, beyond the hydrodynamic region the real parts of the generalized hydrodynamic and
kinetic modes can have comparable values.

Two high-frequency branches of kinetic propagating modes z±2 (k) and z±3 (k) have diff-
erent dispersions. While the former has some features of the sound branch (a minimum in
the region of Qp, and a maximum at ∼Qp/2), the latter is rather narrow. To find the origin
of the high-frequency kinetic branches in the spectrum of collective excitations of liquid Bi,
we proceed in the following way: (i) introduce orthogonal dynamical variables; (ii) calculate
spectra of generalized modes from separated basis subsets generated by orthogonal dynamical
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variables; (iii) compare spectra obtained from separated subsets and A(9). In the case of
weak mode-coupling effects, one can expect some branches of the spectrum obtained for
the ‘coupled’ basis set A(9) to be reproduced by branches obtained from separated subsets.
A similar analysis performed for transverse spectra of binary liquids enabled us to find the
optic-like excitations in non-ionic binary liquids [9].

We define the operator ĥ(k, t):

ĥ(k, t) = ê(k, t)− fne

fnn
n̂(k, t). (19)

It is easily to verify that the operator ĥ(k, t) is orthogonal to the density operator n̂(k, t),
in contrast to the energy-density one. Now, the set of three variables n̂(k, t), Ĵ (k, t), ĥ(k, t)
contains only orthogonal variables and can be extended by including their time derivatives. The
dynamical variable ĥ(k, t) describes, in fact, the heat-density fluctuations [33, 34], and in the
limit k → 0 the thermodiffusive mode emerges exclusively due to heat-density fluctuations.
In figure 6 the set of TCFs Fhh(k, t) for different k-values is shown. One can see that even for
kmin this time correlation function does not have the single-exponential form, which is a result
of coupling between heat and viscous processes [33].
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10.4kmin

Figure 6. Normalized ‘heat-density–heat-density’ time correlation functions Fhh(k, t) for four
k-values. kmin and τ are 0.1928 Å−1 and 3.42 ps, respectively.

To understand the shape of the TCFs Fhh(k, t) shown in figure 6, we generated a set of
four dynamical variables:

A(4h)(k, t) =
{
h(k, t), ḣ(k, t), ḧ(k, t),

...

h(k, t)
}
. (20)

Another separated subset which can be considered does not contain a heat-density (or energy-
density) operator or its time derivatives and consists of five operators:

A(5)(k, t) =
{
n(k, t), Jl(k, t), J̇l(k, t), J̈l(k, t),

...

Jl(k, t)
}
. (21)

The two subsets (20) and (21) form together a nine-variable basis, which can be obtained from
A9(k, t), equation (1), by linear transformation of variables. Hence, one can expect spectra of
collective modes obtained from separated subsets (20) and (21) to give additional information
about the origin of branches of the spectrum calculated from the ‘coupled’ nine-variable basis
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set (1). In figure 7 the spectra of eigenvalues for the separated sets (20) and (21) are shown
by closed and open boxes, respectively. It is seen that the second branch of propagating
modes z±2 (k), as well as the lowest purely real eigenvalues zR1 (k), appear due to the heat-
density fluctuations in the liquid. Thus, along with thermodiffusion there exist propagating
heat modes (high-frequency heat waves) in liquid Bi. The third high-frequency branch of
propagating modes z±3 (k) is derived from density fluctuations and, due to very high damping
(Re(z±3 (k)) ∼ 30 ps−1), does not contribute significantly to the dynamical properties of the
liquid. These excitations have extremely short lifetimes, which are defined as the inverses of
the real parts of their eigenvalues.
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Figure 7. Spectra of propagating collective excitations, obtained for the separated subsets A(5)(k, t)
(shown by open boxes) and A(4h)(k, t) (closed boxes).

The method of GCM makes it possible to investigate the separated mode contributions to
various TCFs and the dynamic structure factor according to (10) and (8), respectively. We are
interested mainly in the contributions of heat waves to the density–density time correlation
functions, which appear due to the mode-coupling effects. In figure 8 we show by different lines
the contributions of generalized hydrodynamic modes (acoustic z±1 (k) and thermodiffusive
zR1 (k)) and kinetic heat modes z±2 (k) to density–density TCFs. It is seen that within the nine-
variable approximation of the GCM method the solutions for time correlation functions (10),
shown by solid lines, reproduce very nicely MD-derived time correlation functions (diamond
symbols). For the smallest wavevector kmin, the shape ofFnn(k, t) is mainly defined by acoustic
modes. On increasing k the contribution of the branch z±1 decreases, while that of the mode
zR1 (k) increases, and for k ∼ Qp becomes dominant. One can see that in the case of liquid Bi
the heat waves (kinetic collective propagating modes z±2 (k)) have almost zero weight for all
k-values investigated. Their contributions are two orders of magnitude smaller than the ones
from the three hydrodynamic modes: acoustic excitations and the thermodiffusive mode.

The contributions of heat waves, however, can be seen in the ‘heat-density–heat-density’
time correlation function. In figure 9 the function Fhh(k, t) as well as the separated mode
contributions are shown for two k-values. Interestingly, the oscillations of this time correlation
function for k = kmin are caused by acoustic excitations, although the dominant contribution
is from the thermodiffusive purely real mode zR1 (k). This result is obvious, because the real
parts of sound modes are much smaller than those of heat waves in the small-k region, and this
produces the big difference in their contributions. However, for larger k-values the weights of
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Figure 8. Separated mode contributions to the density–density time correlation functions Fnn(k, t)
for three k-values. The MD-derived function and the result from GCM study (10) are shown by
symbols and solid lines, respectively. Mode contributions from kinetic heat waves, generalized
sound excitations, and generalized thermodiffusive modes are given by dashed, dashed–dotted, and
dotted lines, respectively. kmin and τ are 0.1928 Å−1 and 3.42 ps, respectively.
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Figure 9. Separated mode contributions to the heat-density–heat-density time correlation functions
Fhh(k, t) for two k-values. Reduced units are used. All of the other features are the same as in
figure 8.

sound modes are reduced and the contributions of heat waves become even stronger than those
of sound excitations. In figure 9 one can see that for large k-values the heat waves substantially
contribute to the time correlation function Fhh(k, t).

4. Conclusions

The main results of this study are the following:

(i) The spectrum of collective excitations of liquid-semimetallic Bi obtained within the high-
number-of-variables approximation of the parameter-free method of generalized collective
modes contains three branches of propagating excitations: generalized sound modes and
two high-frequency kinetic branches.
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(ii) Heat fluctuations cause not only thermodiffusive processes in liquid-semimetal Bi, but
also kinetic high-frequency heat waves, with sound-like dispersion, which at k → 0,
however, tends to a finite value.

(iii) In the case of Bi, the high-frequency heat waves have extremely small weights to make
visible contributions to the density–density time correlation functions. This means that
high-frequency kinetic excitations in the case of liquid Bi cannot have an effect on the
dynamic structure factor, which is supposed to occur in the case of another semimetal,
Ga [3]. The mode-coupling effects in liquid Bi at 578 K are found to be very small.
This results in very good agreement of the speed of sound estimated in this study with its
experimental value.

(iv) To our knowledge, this study is one of the first investigations of heat waves in a pure liquid
from the microscopic point of view in contrast to the phenomenological approach used in
the frameworks of physics of continuous media [35].
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